
Around the
Supply Chain in 80 Slides
Around the

Supply Chain in 80 Slides

Rootconf 2025

Nemo, endoflife.date

Intro Slide. The plan was to do a talk that sets the context for the Supply Chain
Security track at Rootconf.

Nemƒ

Pantheon

A little about me. The word-cloud is a fun way to explore things that I’m interested in
currently. On the right is my photo from my recent visit to Rome!

Quick

This talk will be Quick.

Catch-up

We will be doing a lot of catch-up about what happened in the Software Supply Chain
Security space in the last year and half or so.

Deep

I won’t be going deep. We have other speakers doing that.

Inspire

Hopefully, this talk will inspire folks towards building the next generation of security
tooling.

Not Exhaustive

This is not an exhaustive talk - I can’t cover everything in Software Supply Chain
Security in just 25 minutes.

Supply Chain
Attack or Not

Lets start with a quick quiz on whether a given attack classifies as Software Supply
Chain Security attack or not.

pypi.org/package/
python-requests

A malicious package gets registered on PyPi with a name confusion to another
popular package. Software Supply Chain Security or not?

http://pypi.org/package/

NPM has a major outage. Software Supply Chain Security attack or not?

DockerHub 1M Spam Repositories

DockerHub gets 1M spam repositories that are linking to phishing websites. Software
Supply Chain Security attack or not?

Linux Kernel Source Repository Hack

The linux kernel source repository gets breached. Software Supply Chain Security
attack or not?

~/aws/credentials

gist.github.com

Your AWS credentials get accidentally uploaded to GitHub. Software Supply Chain
Security attack or not?

Secrets logged on private CI

Your build secrets get logged on a private CI server. Software Supply Chain Security
attack or not?

Malicious Package built on your CI

A malicious package is built inside a fakeroot on your build server. Software Supply
Chain Security attack or not?

Bribe Customer
Support

Data Breach

Your customer support executive gets bribed and hands out customer data. Software
Supply Chain Security attack or not?

Definitions

Software Supply Chain Security is an umbrella buzzword. And as buzzwords go, it
can be fuzzy. So lets take a look at some definitions. Not just for this talk, but to help
set context for the remainder of the track as well.

Software Supply Chain Attack

Insertion of nefarious code

into trusted software before

delivery.
Russ Cox. 2025.

Fifty Years of Open Source Software Supply Chain Security

This comes from Russ Cox, Golang developer who wrote an article in the ACM about
Fifty Years of Open Source Software Supply Chain Security. He defines Software
Supply Chain attack as “Insertion of nefarious code into trusted software before
delivery.” Focus on “before delivery”

Software Supply Chain Vulnerability

An exploitable weakness in

trusted software caused by

a third-party, component of

that software.
Russ Cox. 2025.

Fifty Years of Open Source Software Supply Chain Security

He defines Software Supply Chain vulnerability as “An exploitable weakness in
trusted software caused by a third-party, component of that software.” Focus on
“third-party”. If its your own software, that is just regula vulnerability..

Software Supply Chain Security

The engineering of defenses

against software supply

chain attacks and

vulnerabilities.
Russ Cox. 2025.

Fifty Years of Open Source Software Supply Chain Security

The Software Supply Chain Security definition falls out from the previous two as “the
engineering of defenses against software supply chain attacks and vulnerabilities.”

Open Source*
Software Supply Chain

A small caveat on these definitions that they were defined as “Open Source Software
Supply Chain”, but i feel they work well without the Open Source tag as well.

tj-actions

xz-utils

Let’s get a bit more concrete. And look at two recent attacks. Tj-actions was just a few
months ago, and xz-utils was last year.

 tj-actions

An important thing about tj-actions was how it took months of effort and secrets
leaked across 6 different repositories for the final attack. This isn’t a point and shoot
attack, but a dedicated persistent attacker. There’s more details in the leaflet that you
can find at Rootconf.

tj-actions

● Immutable GitHub Actions

● Transparency Logs

● Version Pinning

● Tag Protection

● Malicious Fork/Branch

Scans

● Vulnerable CI Scans

Instead of focusing on the attack, let us look at how we could have prevented or
detected these attacks earlier. In the case of tj-actions - which used Github Actions to
pivot and escalate - simple versioning pinning or immutable action artifacts would
have prevented the attack. Tag Protection would have prevented the tag from being
overwritten. Since the attack relied on malicious forks and branches being created as
a recon and attack mechanism - any scanners looking out for temporary branches
would have caught it. Existing CI system scanners such as “zizmor” would have
caught the vulnerable pull_request_target vulnerability as well.

tj-actions xz-utils

● Immutable GitHub Actions

● Transparency Logs

● Version Pinning

● Tag Protection

● Malicious Fork/Branch

Scans

● Vulnerable CI Scans

● ozz-fuzz

● Minimal Dependency

● Dynamic Loading

● Source/Release diffs

● Security Audits

On xz-utils, since it was a malicious insider. ozz-fuzz where valgrind caught some
bugs in the backdoor would not have helped, mainly because fuzzing tooling is not
looking for backdoors. Switching to minimal dependencies would have helped, as
Gentoo which didn’t link ssh to libsystemd wasn’t impacted. Dynamic Loading of
dependencies at runtime (instead of Dynamic Linking) via dlopen style calls would
have helped. Systemd has now switched to that already. There aren’t any systems
doing source v/s release diffs, but if there were - they might have caught the autoconf
backdoor as an obvious large change in the xz releases. And finally, a security audit
might have picked up the malicious changes, and maybe the delivery mechanism.

Source Build Delivery

Software Supply Chain Security

This is the common framing in use for Software Supply Chain Security - breaking it
into your source which is what goes into your software. Then the build stage where
your code and the dependencies get built, and finally the delivery stage where your
software reaches your end-users. A compromise in any of these three results in a
software supply chain attack. Lets look at all three of these from a bird-eye lens -
rapid fire

Detect
Obviously
Malicious ™
Packages

Source /
Defense

The first is detecting obviously malicious packages. This isn’t hard. Packages with
pre-install scripts that use base64 to encode a malware drop stand out very easily.
Existing tooling can detect such malicious packages today. The harder problem is:

Prevent Obviously
Malicious Package

Installation
Source /
Defense

Preventing such packages from being installed in the first place is much harder.
However, there is tooling which can scan packages at install time and prevent them
from being installed. Look at https://github.com/safedep/pmg or
https://github.com/DataDog/supply-chain-firewall for example.

https://github.com/safedep/pmg
https://github.com/DataDog/supply-chain-firewall

Security-Advisory
Meta Package that
conflicts with
vulnerable packages

Source /
Defense

Another interesting approach is to create a meta package that conflicts with all known
vulnerable packages. The PHP community has been doing it at
https://packagist.org/packages/roave/security-advisories, and this one package
prevents installation of known vulnerable packages.

https://packagist.org/packages/roave/security-advisories

Typosquatting
Slopsquatting

Source / Attack

Two new attacks are typosquatting and slopsquatting. Typosquatting is quite old,
where malicious packages with a similar sounding name to a popular package are
registered. Slopsquatting similarly is registering package names that are commonly
hallucinated by LLMs, and using them for serving malicious code.

Improve
Security Scan
cadence ⏰

Source /
Defense

Increasing the security cadence of your scans, whatever shape these scans take, is
an easy way to make your posture aligned with reality. Whatever it might be, get it
lowered. See if you can scan every commit and every branch, instead of just scanning
the master branch every day.

Smarter CVE*
Prioritization

Source /
Defense

Prioritize your CVEs (and other vulnerability data). Look at KEVs from CISA on what
vulnerabilities are being exploited. Look at not just the CVSS score, but EPSS as well.
Check what your distro is saying about the vulnerability.

End-of-Life
Tracking ⌛

Source /
Defense

Track your EOL dates. This is what I do at endoflife.date, so this is close to my heart,
but EOL tracking is essential for your critical dependencies. Because when a CVE
drops, you might not have a clear pathway to a safe upgrade because you were on an
EOL version, but there was no alert till it was very late.

Trusted OSS
Supplier

Source /
Defense

Look at trusted/curated OSS Supplier Programs. Google, Chainguard run one each,
but there’s other companies as well. Every distro in a way runs their own trusted oss
program rebuilding packages from source code.

Malicious
AI Models

Source / Attack

Another interesting attack is coming via malicious AI model pickling attacks, where a
model can include deserialization attacks for malware.

Source / Defense

OpenSSF
Scorecard

Look at OpenSSF scorecard to score your dependencies on how they are faring on
security. Maybe there’s an opportunity to switch.

Source / Defense

Audit your
SBOMs

Every security engineer will tell you that SBOMs are leaky - they don’t reflect the
reality of your production systems. Most SBOM tooling is a by-product of our existing
package-management ecosystems, and thus misses on so much more (compiler
toolchains, ad-hoc dependencies, downloaded binaries, software installed with a
make install). Something that’s easy to do is to take your SBOM and audit it - check it
for missing software, across different layers of your stack.

Source / Defense

Score your
Dependencies

Score your dependencies, not just with the OpenSSF scorecard. But there’s so much
more you can use to score them - look at whether they are included in linux distros or
assured source programs, check the number of dependents of a package, calculate
your risk according to what it does, and where it runs. Look at whether the repository
of the dependency still has any activity, whether it has been archived or yanked.

Source / Vulnerability

Security
Commons
Funding

A quick note about the MITRE and NVD funding crises that happened last and this
year. The leaflet in your hands talks a bit more about the crisis. The funding for both
the NVD and the CVE programs is a single source US-agency funding which has
caused a risk in the security ecosytem because these databases are critical to
everything else that we do as an industry. These are also vulnerabilities in the system.

Build / Defense

Commit
/Release
Signing

Moving to defense, a quick way to increase your confidence in the source code is to
enforce comit/release signing for CI systems to be triggered, relying on a hardware
signature or a JIT-OIDC-attestation. This avoids token-theft attacks from being easily
leveraged to push code to the build systems.

Tokenless
CI/OIDC
Auth

Build / Defense

My favorite security system rollout in the last few years have been OIDC Attestation
rollouts in CI systems that can be chained with external systems to deploy
service-authentication mechanisms without any long-lived keys. See
https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-
deployments/configuring-openid-connect-in-cloud-providers for how GitHub Actions
supports this for example.

https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/configuring-openid-connect-in-cloud-providersf
https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/configuring-openid-connect-in-cloud-providersf

Lower CI
Perms

Build / Defense

Age old security paradigm still applies: Run with least permissions in your CI systems.
Split your risky pipelines by execution environments (jobs) to avoid environment leak
attacks, such as the one used in the tj-actions attack.

Build / Vulnerability

MCP System
Credentials

Another vulnerability in AI systems comes from how MCP (Model Context Protocol)
clients save their credentials. With more MCP servers coming up every day, there are
more and more tokens being stored alongside these MCP systems, which have a new
risk of their own.

Build / Vulnerability

Insecure CI
Configuration

CI pipelines can be scanned by modern tooling like zizmor. Almost every platform also
provides their Well Architected or Best Practice Guidelines for security. Benchmark
yourselves against that, see if your tooling supports scanning against that. Avoid
using pull_request_target - it is just too hard to use safely.

Build / Defense

Lockfiles

Lockfiles are great, and the guarantees that they provide are essential in modern SRE
practices. But there’s still scenarios where lockfiles are not used often, such as
distribution packages inside a container, or github actions. If you’ve the early wins,
then focus on the harder ones.

Build / Defense

Private
Proxy

Package
Server

Setup a private proxy package server. It gets you free caching that protects against
upstream outages, but also lets you do far more interesting things - block installation
of all known vulnerable packages. Alert the security team when an archived package
is installed.

Delivery / Defense

Publish
SBOMs

Publish your SBOMs, even if this is internally. SBOMs are amazing, and having your
entire SBOMs in one place where your entire engineering team can look at it is a
great leverage point for an org if used well. You can not only check what you’re using,
but there’s a lot of data inside the SBOMs that can be leveraged for making important
decisions.

Delivery / Defense

Release
Attestations

Do release attestations via Sigstore. Gives you a guarantee of what you’re releasing
has a clear and verifiable provenance

Delivery / Defense

Trusted
Publishing

Trusted Publishing is using the OIDC Attestations in CI systems to publish your
release packages. Doesn’t apply everywhere, but if you’re publishing packages to a
place like NPM or PyPi, you can use Trusted Publishing. This also applies to
publishing to something like a S3 bucket, it just takes a bit more work.

Delivery / Defense

Release
Diff

Alerts

Consume your release artifcats as an end-user would, and diff+validate them against
your final builds. If you had a provenance attestation, this is easier but if not - do diffs.
Many supply chain attacks in the past would have been detected much earlier with a
process like this in place

Delivery / Attack

Token
Theft

Token theft attacks are fairly common escalation mechanisms. Setup canary tokens,
and additional checks such as IP address allowlists against your tokens to both
reduce the risk, and trigger alerts.

Systems

Phew! That was alot of ideas. But as a security team how can you deploy these
systems in a reasonable manner?

Around the
Supply Chain in 80 Slides
Supply Chain

Security Maturity Model

RedHat / Sonatype

I’ll start with a Software Supply Chain Security Maturity Model. There’s 2 companies
that have published their take on it -Redhat and Sonatype.

https://www.redhat.com/en/resources/software-supply-chain-security-report-overview
https://www.sonatype.com/state-of-the-software-supply-chain/2023/software-supply-chain-maturity

Unmanaged

Exploration

Ad-Hoc

Control

Monitor & Measure

A maturity model benchmarks your organization on a given theme or competency
across 4-5 different levels. The higher the level, the more mature your org in that field
as the rolouts are more mature, controlled, and data reliant. At the earliest stages, it
could be an unmanaged exploration, such as an org where any developer can install
any dependency across any system.

Policy Governance
Compliance

Consistency /
Build & Release

Inventory /
Supplier Hygiene /

Transparency

Resilience /
Remediation

The maturity models split this progression over 4 broadly similar themes: Policy /
Builds / Inventory / Remediation. The first tracks your compliance requirements and
the maturity of your internal policies for things like OSS Consumption, license checks
etc. The second tracks where you stand on the security and consistency of your
builds - are they reproducible, are they pinned, are they homogenous? Finally, the last
two track you on your supplier hygiene and remediation efforts for when something
happens, such as a CVE showing up in scans.

Policy Governance
Compliance

Consistency /
Build & Release

Inventory /
Supplier Hygiene /

Transparency

Resilience /
Remediation

3 4

22

You will typically set your own targets for what changes will get you from Ad-Hoc to
Controlled to Monitored maturity. Think of items like: Coverage on your OSS
dependency tree, or SBOM coverage, or coverage of builds with provenance. For
remediation, look at timelines and track how quick your response times are to a
critical or high CVE. There’s a lot more in the guides that I’m referencing - do take a
look.

IDC Survey, Q4 2024 by Canonical/Google

Biggest challenges for OSS
Software Supply Chains

The Supply Chain Security world is quite broad, but as it turns out the majority of
challenges that companies are facing come from Software ingestion itself. As per a
IDC Survey commissioned by Canonical/Google, the number 1 challenge faced by
enterprises is Vulnerability and patch management, followed by insufficient visibility
into the software dependencies.

https://ubuntu.com/engage/2025-state-of-software-supply-chain

Around the
Supply Chain in 80 Slides
Secure Supply Chain

Consumption Framework

OpenSSF / Microsoft

If you’d like to focus on the consumption side, look at the Secure Supply Chain
Consumption Framework. Created by Microsoft, and then donated to the OpenSSF
Foundation, it provides guidelines and levels on how you can securely consume
third-party software.

https://github.com/ossf/s2c2f

Ingest Inventory

Update Enforce

Audit Scan
Rebuild Fix+Upstream

It broadly covers tasks across 8 tracks: For every third-party component, how do you
ingest it, update it, and track it in your inventory. Further, ti asks you to enforce your
policies, scan and audit for the same. At the highest levels, it requires you to rebuild
the OSS dependencies, and be prepared to patch them in-house if needed.

s2c2f

This is how the 4 Levels look like. At the basic level, it focuses on Updates, Scanning,
and Ingestion guidelines. As you move up, it asks you to do harder things, like
scanning for malware, or enforcing OSS provenance, and consuming OSS
components from a curated feed - something we covered earlier.

https://github.com/ossf/s2c2f

SLSA

And then we get to SLSA (slsa.dev), which is a framework that primarily focuses on
build provenance. Provenance is the verifiable information about software artifacts
describing where, when, and how something was produced. It includes information
about your build, the components, and exactly where and how it was run - ideally in
an isolated environment. In case of a breach, the provenance can help you trace back
where something happened, and do things like - knowing the extent of the
compromise. All of this happens with cryptographic attestations (via sigstore or the
like) so your consumers not only get the same guarantees, but they can also verify
the same.

https://slsa.dev/

Open Software Supply
Chain

Attack Reference (OSC&R)

Something else that you can look at is the Open Software Supply Chain Attack
Reference (OSC&R, pronounced OSCAR). It is an analogous framework to the
MITRE ATT&CK framework, but focused on supply chain security attacks. It includes
various techniques on recon, attacks, impersonation used in these attacks, as well as
enumerated scenarios for lateral movements. It has several tracks, including
Container Security, OSS Consumption, Cloud Security, Secret Consumption and a
few more.

https://pbom.dev/#overview
https://pbom.dev/#overview
https://pbom.dev/#overview

Source Build Delivery

Software Supply Chain Security

That’s all. I hope this was a nice intro to what Supply Chain Security looks like in
2025.

Around the
Supply Chain in 80 Slides

Around the

Supply Chain in 80 Slides

Rootconf 2025

Nemo, endoflife.date

I’ll be around this track the entire day, come talk to me about EOL, SBOMs, or
interesting supply chain security attacks.

